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محتوي الكربونى العضوى الكلى العصبيه الاصطناعيه لتقدير ال تطبيق تقنية الشبكات

 باستخدام البيانات البتروفيزيائيه.

يؤثر المحتوى الكربونى العضوى الموجود بصخور المصدر على العديد من الخلاصه.

زمن مرور الموجات بقراءات مساميه والتسجيلات الكهربائيه, حيث تتميز صخور المصدر 

 نوعيه افه منخفضه بالاضافه الى مقاومهصوتيه واشعاعات جاما عاليه يقابلها قراءات كثال

 نتائج يتضمن هذا البحث محاوله لتأسيس طريقه كميه للربط بينو اعلى من الصخور الاخرى.

الذكاء الاصطناعى حيث  برامج باستخدام نى العضوىوتسجيلات الآبار والمحتوى الكرب

ى العضوى الكلى من وظفت تقنية الشبكات العصبيه الاصطناعيه لاستنتاج المحتوى الكربون

تسجيلات الآبار مع استخدام مثال من صخور خزان الكريتاوى العلوى فى الجزء الشرقى من 

  شمال الصحراء الغربيه بمصر.

  

Abstract. Total organic carbon content (TOC) present in the potential source rocks 

significantly affects the response of several types of well logs. They are characterized by 

higher porosity, higher sonic transit time, lower density, higher gamma-ray, and 

higher resistivity than other rocks. This paper attempts to establish a quantitative 

correlation between standard well logs (sonic, density, neutron, gamma-ray and 

resistivity) and total organic carbon by means of intelligent systems with an example 

from the Upper Cretaceous reservoirs, in the eastern part of the North Western Desert 

of Egypt. This dissertation utilizes the ability of neural networks to discover patterns in 

the data important for the required decision, which may be imperceptible to human brain 

or standard statistical methods. Thus the idea is not to eliminate the interpretation from 

an experienced petrophysicist but to make the task simpler and faster for future work. 

 

1. Introduction 

Source rocks are commonly shales and lime mudstones that contain significant 

amounts of organic matter (Tissot and Welte, 1984), and has the capability to generate 

and expel enough hydrocarbons to form an accumulation of oil or gas. The most 

important factor controlling the generation of oil and gas is the hydrogen content of the 

organic matter (OM) (Hunt and Jaieson, 1956 and Hunt, 1996). The quantity of organic 

matter   usually   is   expressed   as   total 

 

 

 

organic carbon (TOC) and is measured with Rock-Eval technique. The response of 

various logging tools to the organic matter content of rocks is related to the 

distinctive physical properties of organic matter and to the tool's design. Organic 

matter disseminated throughout sediments has several distinct features: (1) it is 

often highly radioactive; (2) it is generally of low bulk density (1.03-1.1 g/cc); (Autric 

and Dumesnil, 1985); (3)  

it has high hydrogen content; and (4) it is generally non-conductive or nearly non-

conductive. As a result, natural gamma ray, porosity and resistivity logs frequently have 

a noticeable response to organic-rich rocks.  
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In this work a multiple networks systems developed by Bhatt and Helle, (2001) for 

predicting total organic carbon from wireline logs. The method is much more robust and 

accurate than a single network and the multiple linear regression method. The basic unit 

of a multiple artificial neural  system is a multilayer perceptron network (MLP) whose 

optimum architecture and size of training data set has been discovered by trial and error, 

then the generated artificial neural network system has been successfully applied for 

predicting the TOC of the Upper Cretaceous reservoirs, in the study area, Fig.(1). 

In summary, the main objectives of this study are: 

• to investigate the ability of multiple artificial neural  system , to predict TOC, 

• to introduce unconventional solution  to overcome the general absence of core samples 

from within source rock intervals, and the often incomplete, time-consuming and 

expensive geochemical laboratory analysis.  

• to compare the performance of the proposed technique with that of conventional 

models. 

• to apply the multiple artificial neural  s technique to estimate the TOC of one of the 

studied wells (East Qarun Well), which has not been cored. 

 

2. Total organic carbon-an overview. 

Numerous studies have illustrated the potential value of wireline logs for source 

rock evaluation. Beers (1945), Swanson (1960), Fertle (1988), Schmoker (1981) and 

Hertzog et al. (1989) used gamma-ray spectral log for identifying organic-rich rocks. 

Schmoker and Hester (1983) proposed the use of the density log for estimating organic 

matter content. Dellenbach et al. (1983) and Hussain (1987) developed a method using 

the transit-time and gamma-ray curves to provide a parameter that relates linearly to 

organic richness. A method involving a combination of resistivity, density and sonic logs 

has been introduced by Meyer and Nederlof (1984). This method discriminates between 

source rocks and non-source rocks without attempting to quantify the organic richness 

from combination of logs. Mendelson and Toksoz (1985) applied multivariate analysis of 

log data to characterize source rocks. At last, Passey et al. (1990) invented a new 

technique called DLogR. This technique employs the overlaying of porosity logs (sonic, 

density and neutron) and resistivity log for identifying and calculating total organic 

carbon content.  

Neural networks for quantitative analysis of source rocks from well logs have been 

demonstrated in several practical applications (e.g. Huang and Williamson, 1996), used 

artificial neural network (NN) modeling for source rock characterization, Kamali 

and Mirshady (2004) used DlogR and neuro-fuzzy (NF) techniques for determining 

TOC from well log data and Ali Kadkhodaie-Ilkhchi et al., (2008) integrates intelligent 

systems, (including genetic algorithms (Gas), fuzzy logic (FL), neural network NN, and 

neuro-fuzzy NF), and the concept of committee to develop an improved and more 

accurate model for TOC prediction in reservoir intervals.  

 

3. Artificial Neural Networks.  

The design and implementation 

of intelligent systems with human capabilities is the starting point to design Artificial 

Neural Networks (ANNs). The original idea takes after neuroscience theory on how 

neurons in the human brain cooperate to learn from a set of input signals to produce an 
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answer. A neural network can be described as a massively parallel distributed 

processor made up of simple processing units called neurons, which has a natural 

tendency for storing experiential knowledge and making it available for use.  

Neurons are grouped into layers. In a multi-layer network there are usually an input layer, 

one or more hidden layers and an output layer. The number of neurons in the input layer 

corresponds to the number of parameters that are being presented to the network as input. 

The same is true for the output layer.  The neurons in the hidden layer or layers are 

mainly responsible for feature extraction. Figure (2) is a schematic diagram of a fully 

connected three layered neural network. 

Neural nets can be divided into two major categories based on the training methods, 

namely supervised and unsupervised neural networks.  

Most of the neural network applications in the oil and gas industry are based on 

supervised training algorithms.    

In a typical neural data processing procedure, the database is divided into three separate 

portions called training, calibration and verification sets (training, test and validation 

sets).   

There are many types of ANN learning algorithms. One of the most popular is back-

propagation and was developed by Rumel hart et al. (1986). An ANN that uses back-

propagation (BP-ANN) always has an input layer, which contains several input nodes, an 

output layer, which contains one or several output nodes, and at least one hidden layer, 

which contains several nodes, (Fig.3). Nodes in the hidden and output layers are 

sometimes referred to as processing units. The processing units are nodes which are 

capable of  

manipulating data through the application of a certain transform function (e.g. the 

sigmoidal function, inverse hyberbolic tangent function, etc.). Nodes of adjacent layers 

are interconnected by weights which are initially randomized. In BP-ANNs, however, 

there is no interconnection amongst nodes of the same layer. 

 

4. Data availability 

In this study a multiple networks systems is developed to predict TOC from 

petrophysical data including sonic porosity (µs/ft), resistivity (ohm-m), neutron porosity, 

density (g/cm3) and gamma-ray (API) logs, for 4 wells (N.B.Q-2X, N.B.Q-1X, Gindi 

Deep-1X and East Qarun ) located at the eastern part of the North Western Desert of 

Egypt. For this purpose, 271 samples from the logged intervals of the Upper Cretaceous 

reservoirs, collected for Rock-Eval pyrolysis and measuring TOC. Core data are available 

for the first three wells. The dataset is divided into 218 data points used in the training set 

and 53 data points in the test set. 101 input   data   points   were   used   in   the  

validation set to predict the TOC of East Qarun well. 

 

 

 

5. Physical relationships between TOC and input petrophysical data 

There is a logical relationship between petrophysical data used and TOC content 

present in reservoir rocks. According to Fig. 4a–c, petrophysical data including GR, 

NPHI and DT show a direct relationship with TOC.  

 



 

                    
 

 

This relationship is reversed for RHOB data. A gamma-ray tool measures the 

radioactivity of various formations. Generally, organic-rich rocks have high 

concentrations of radioactive elements including potassium, thorium and uranium and 

increase the γ-ray response. Neutron log reading is a response of hydrogen atoms 

concentration in rocks. The volume of organic matter in the formation has a direct 

relationship with hydrogen atoms content and porosity of the rock. Thus, neutron porosity 

increases in the organic-rich intervals. The sonic transit time (DT) is the reciprocal of the 

velocity of the compressional wave and is a function of formation lithology, porosity, 

type and distribution models of fluids (water, gas, oil, kerogen, etc.). With apparent DT 

value increase TOC content tends to elevate (Kamali and Mirshady, 2004). Density log 

measures the bulk density of the formation, a response of fluids and matrix constituent 

minerals density. Organic matters have a low density (about 1 g/cm3) and their 

concentration tends to reduce the bulk density of the rock. The resistivity log indirectly 

measures rock resistivity through variations in fluid saturation, because fluid content is a 

major control on the rock resistivity. Generally, organic-matter-bearing layers have 



higher resistivity than the other rocks. It is true, especially when kerogen becomes mature 

and generates hydrocarbon filling pore spaces.  

 

6. Methodology. 

The applied technique in the present work consists of a group of artificial neural 

networks, each one employs multi-layer perceptrons trained with the backpropagation 

algorithm. The input layer is comprised of six processing elements (PEs) representing the 

following input parameters: depth (ft.), sonic porosity (µs/ft), resistivity (ohm-m), 

neutron porosity (v/v), density (g/cc) and gamma-ray (API) logs, while the output layer is 

represented by a single TOC (wt.%). Table (1) summarizes the ranges of all input and 

output variables considered.  

The design philosophy of the ANNs used in this study may be summarized by the 

following steps: 

▪ Determination of model inputs 

▪ Data handling and pre-processing 

▪ Data division 

▪ Network architecture design 

▪ Weight optimization (training) 

▪ Stopping criteria 

▪ Model validation. 

 

                      
 

A number of simulation trials were conducted. The common key features of these trials 

may be summarized, as follows: 

1. The use of three data subsets, including training, testing and validation sets. Cross-

validation was used as the stopping criterion to avoid over-fitting. The available data 

were split so that they were statistically consistent. To check consistency, statistical 

measures such as average, median and standard deviation were calculated for all subsets. 

Table (2) shows a sample for some of the input and output variables. Furthermore, to 

comply with   the activation   function's range, all input and output variables are 

normalized using the following equation: 

minmax

min









nor  



Where nor normalized value, min original lower limit, max original upper limit and      

original value 

2. The use of a network with a single hidden layer. The optimal number of hidden nodes 

was determined using a constructive approach (starting with 4 nodes and testing for a 

larger number of nodes). A maximum of 25 nodes was selected. 

3. The use of the back-propagation algorithm for adjusting and optimizing connection 

weights and biases. The following tuning was deployed: learning rate=0.9, momentum 

term=0.6. 

4. Calculation of mean absolute error (MAE), root mean square error (RMSE) and 

correlation coefficient (R2) for all three data sets (train, test and validation). The 

mathematical expressions of R2, MAE, and RMSE are defined in Sahoo and Ray (2006). 

In brief, the ANN predictions are optimum if R2, MAE, and RMSE are found to be close 

to 1, 0, and 0, respectively. Error measurements to the testing set were used to assess 

network performance and to choose the optimal network. Table (3) summarizes some of 

the results obtained.  

5. In the multiple artificial neural network approach 30 networks were trained on the 

same training dataset with random initial conditions of weights and bias with the goal that 

different networks will converge differently on the error surface. Out of those 30 

networks 15 networks were selected, which gave minimum bias and variance on the 

validation set. The networks outputs are combined by ensemble averaging (Naftaly et al., 

1997) and optimum linear combination (OLC) method (Hashem, 1997). The main aim of 

using multiple artificial neural networks is to obtain a better TOC prediction by a 

combination of networks instead of finding a single network by a trial and error 

approach, the architecture of a committee is shown in Figure (5).  

In order to assess the validity of the multiple artificial neural  technique, a comparison of 

the predicted TOC (ANNs) with the measured TOC (core data) was made using the ANN 

validation set, moreover, TOC is determined using the DlogR technique (Passey et al., 

1990), and compared with the predicted and actual TOC. 

The DlogR method proposed by Passey et al. (1990) combines the model-driven 

and data-driven approaches. The DlogR method overlays an appropriately scaled 

porosity log (sonic, density or neutron porosity) on a resistivity log (preferably from a 

deep-reading tool). At a certain scale, intervals where porosity log and resistivity log 

parallel or directly overlay each other are water saturated non-source rocks. In 

hydrocarbon reservoir rocks or source rocks, a separation between the two logs occurs. 

When the two logs are base lined, this separation (termed DlogR) can be quantified and 

TOC can be calculated with a non-linear relationship among TOC, DlogR and maturity. 

 

7. Case study. 

The study area is located at the eastern part of the North Western Desert of Egypt, 

it lies in the northern unstable shelf of the Northern Western Desert, and is characterized 

by deep and rugged basement rocks, thick sedimentary succession of highly-printed 

complex structural effects represented by asymmetric linear  folding,  faulting  and  
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Fig. (4): Physical relationships between TOC and input petrophysical data  

  

 

 
 

       Fig. (5) A schematic diagram of CMIS 
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diaprism resulted from considerable and varying tectonic disturbances, Abd El-Aziz et al. 

(1998). The Upper Cretaceous reservoir rocks (Bahariya and Abu Roash formations) are 

heterogeneous in composition. Bahariya Formation consists of sandstone with shale, 

limestone and dolomite. Abu Roash Formation, on the other hand, is subdivided into 

seven members designated from bottom to top as  G, F, E, D, C, B and A. The rocks 



forming these members are mainly composed of calcareous rocks with argillaceous 

intercalations in the A, B, D and F members and argillaceous rocks are dominant with 

calcareous and arenaceous interbeds in the members C, E and G. The thickness of 

Bahariya Formation in the study area ranges from 686 ft. at N.B.Q-1X well to 1291 ft at 

N.B.Q-2X well, while the thickness of Abu Roash Formation varies from 1975 ft. at 

Gindi deep-1X well to 3795 ft at East Qarun well. 

 

8. Results and discussion. 

In this study, depth, sonic, resistivity, neutron, density and gamma-ray log 

responses are used as inputs to the neural networks and TOC values are the outputs. A set 

of data was chosen randomly (using a random number generator) and put aside. The data 

were not shown to the network during the training period. This data, called the test set, is 

used to check the integrity and robustness of the network after it has reached some stable 

state. Using this data, neural networks try to discover possible pattern that might exist 

between inputs and the corresponding output. After learning the data and recognizing the 

possible noises that might exist in the data, the network will eventually converge. It 

should be noted that one may encounter many different problems throughout this process. 

But a good understanding of the fundamentals of the problem, the tool, and their 

interaction can be of great help in overcoming these difficulties. In order to assess the 

validity of the ANN model developed, a comparison of TOC values determined by 

DlogR technique (Passey et al., 1990) was made with the ANN predicted TOC and the 

actual TOC values, Table (4) and Figure (6).  

 In comparing results obtained from DlogR technique with those obtained from the 

multiple artificial neural system, indications are that the latter outperforms the first.  

Results obtained from all trials are presented in tables (3). Moreover, Figures (7), (8) and 

(9) illustrate the actual and the predicted TOC versus depth for three of the studied wells.  

The technique introduced in this study is used to estimate TOC from well log data for 

East Qarun well, which have not been cored and its TOC’s are not measured. Figure (10) 

represents the predicted TOC of East Qarun well using the preserved weights of the 

artificial neural network in the present work. 

 

 

   

                         
 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDW-4DK687G-1&_user=3406546&_coverDate=12%2F15%2F2004&_rdoc=2&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235993%232004%23999549996%23534894%23FLA%23display%23Volume)&_cdi=5993&_sort=d&_docanchor=&_ct=19&_acct=C000060236&_version=1&_urlVersion=0&_userid=3406546&md5=9111887dee27ff9d2b30058eb23ec057#bib19


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.(6). Comparison between actual TOC, DlogR TOC and 

ANN predicted TOC of N.B.Q.-2X Well.
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Conclusions 

Multiple artificial neural network technique was used for the estimation of TOC 

from petrophysical data in eastern part of the North Western Desert of Egypt .Regarding 

the results developed in this research, the following points are concluded: 

(a) ANNs has been successful for making a quantitative correlation between TOC and 

petrophysical data. The minimum RMSE for estimation of TOC in the test data is 0.037, 

which correspond to the R2 value of 0.992.  

(b)  In this study, the number of measured TOC data was limited. So, there were not 

sufficient data for training. This problem associated with rock heterogeneities such as 

changes in mineralogy, fluid content and saturation could lead to unusual responses of the 

ANN at extreme value (over-estimation or under-estimation). 

 (e) Due to high costs of Rock-Eval pyrolysis, a limited number of samples were used in 

this study. However, ANN predictions for TOC were satisfying. So, it could be 

concluded that when there is a logical relationship between input and output data (such as 

those mentioned for TOC and petrophysical data), intelligent systems could recognize the 

patterns even with limited data. 

(f) The multiple artificial neural network system introduced in this study is able to 

estimate TOC from well log data for other wells in the studied area, which have not been 

cored or their TOC’s are not measured. 

(g) Artificial neural network has a simple and easy structure and when there are multiple 

ways to solve a problem, it could provide smaller errors than the average of all experts by 

combining the outputs of each method. 
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